Few-Shot Health State Recognition of Wind Turbine Drivetrain Using Denoising Diffusion Probabilistic Model And Self-Taught Learning Network
编号:32 访问权限:仅限参会人 更新:2025-06-15 10:14:24 浏览:27次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Abstract—Few-shot samples and variable operating conditions have long been research challenges for intelligent health state recognition in industrial equipment. This paper proposes an intelligent health state recognition method based on a Denoising Diffusion Probabilistic Model (DDPM) embedded with an Inception-structured Self-taught Learning Network (ISLN). The proposed method first converts collected vibration signals into time-frequency representations using Synchrosqueezed Wavelet Transform (SWT). These time-frequency representations are then fed into the DDPM for sample augmentation, generating enhanced training data for the ISLN to perform health state recognition. The method is validated using a wind turbine drivetrain fault simulator. Experimental results demonstrate that the proposed method achieves the highest intelligent diagnosis accuracy in identifying various bearing and gear faults, outperforming other intelligent diagnosis models.
 
关键词
few-shot sample,,variable operating conditions,,denoising diffusion probabilistic model,Inception,self-taught learning
报告人
jun zhang
Student Shanghai University

稿件作者
jun zhang Shanghai University
Xin Xiong Shanghai University
Beibei Fan Shanghai University
Bing Zhao Qinghai University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询