75 / 2025-05-14 19:02:28
A CNN-BiLSTM-Based Evaluation Model for Steady-State Bearing Fault Diagnosis Method
CNN-BiLSTM; Rolling Bearings; Envelope Analysis; Fault Feature Coefficient; Evaluation Model.
全文录用
建文 曾 / 北京航空航天大学
波平 肖 / 北京航空航天大学
麟 马 / 北京航空航天大学
乃超 王 / 北京航空航天大学
燕燕 靳 / 北京航空航天大学
The examination of rolling bearing fault characteristics is crucial for guaranteeing the state of rotating machinery. This paper presents an evaluation model based on CNN-BiLSTM to assess the effectiveness of fault frequency diagnostic methods under steady-state conditions. The model focuses on envelope spectrum analysis, It employs fault feature coefficients (FFC) to label data, The CNN extracts time-frequency features, while the BiLSTM learns sequence features, enabling a binary classification of the diagnosis success. The experimental outcomes means that the model have a high accuracy in effectiveness evaluation.Comparisons show CNN-BiLSTM outperforms CNN-LSTM in precision, recall and F1-score. despite longer training times. This research offers a reliable approach for assessing fault diagnosis methods, facilitating the choice of suitable diagnostic techniques for analyzing bearing vibration signals.

 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询