304 / 2025-06-19 19:52:20
An Anomaly Analysis Method for Rocket Telemetry Data Based on SincNet-LSTM
LSTM, rocket telemetry data, anomaly detection, trend forecasting
全文待审
全全 支 / 北京航天飞行控制中心
Combining the respective advantages of the SincNet neural network and the Long Short-Term Memory (LSTM) network, an anomaly analysis method for rocket telemetry data based on SincNet-LSTM is proposed. SincNet is utilized to precisely identify and extract feature vectors from the time-series structure of rocket telemetry data. The feature vectors output by the SincNet layer, along with the corresponding target vectors, are used as inputs. After training the LSTM network model, prediction results are obtained. The average error between the prediction results and the original data is calculated. Then, based on a non-parametric threshold calculation method, a threshold is determined to judge whether the telemetry data is anomalous, ultimately achieving rocket anomaly detection. The feasibility and effectiveness of the SincNet-LSTM analysis method are verified using telemetry data from a certain type of rocket.
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询