303 / 2025-06-19 19:28:42
CNN-BisLSTM-Attention: A Hybrid Prediction Model for Key Parameters of Aero-Engines
aero-engine,prediction,CNN,LSTM,multi-head self-attention mechanism
全文待审
Zhou Su / Harbin Institute of Technology
Chuanjin Han / Harbin University of Science and Technology
Shouqiang Kang / Harbin University of Science and Technology
大同 刘 / 哈尔滨工业大学
This paper presents CNN-BisLSTM-Attention, a hybrid model for predicting key parameters of aero-engines. The architecture integrates two core modules: (1) A spatio-temporal feature extraction module combining convolutional neural networks for local spatial patterns and bidirectional stabilized long short-term memory (BisLSTM) for long-term dependencies; (2) A self-attention feature enhancement module introducing a multi-head self-attention mechanism to optimize discriminative feature weights. Real data from aero-engines are applied to velidate the performance of the model. Experimental results manifest that the CNN-BisLSTM-Attention model outperforms the comparison models in prediction accuracy. Specifically, for MAE and RMSE indicators, the proposed model improved by 18.6%-46.0% and 14.4%-43.5%, respectively. Additionally, ablation studies prove the contributions of each component of the proposed hybrid prediction model.
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询