278 / 2025-06-15 22:32:43
Multi-Source Data Driven Parallel Branch VIT Intelligent Diagnosis Method for Rolling Bearing Faults
Intelligent fault diagnosis,Multi-branch ViT,Mixed attention mechanism,Gamma correction
全文待审
Wenhao Wang / Nanjing University of Aeronautics and Astronautics
Jiantao Lu / Nanjing University of Aeronautics and Astronautics
Bin Jia / Nanjing University of Aeronautics and Astronautics
Shunming Li / Nanjing University of Aeronautics and Astronautics
Traditional feature fusion fails to characterize true bearing faults under structural complexity and multi-factor influences, this paper proposes a multi-source fusion intelligent fault diagnosis method based on parallel Vision Transformer (ViT) and hybrid attention mechanisms. The method performs time-frequency feature extraction on multi-source vibration data collected from multiple vibration sensors, obtaining feature image data that undergoes Gamma correction preprocessing. A diagnostic model architecture is constructed comprising multiple parallel ViT networks, incorporating a hybrid attention mechanism in the fusion layer to dynamically adjust the contribution weights of features from each sensor. The integration of multiple parallel ViT network branches with an attention-based feature fusion module effectively captures interdependencies within multi-sensor data, thereby enhancing system performance. The results show that the proposed method can effectively achieve high-precision image classification and rolling bearing fault recognition.

 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询