274 / 2025-06-15 22:13:22
Vision-Based Monitoring of Wind Turbine Tower-Blade Coupling Dynamics for Fault Diagnosis
wind turbine, non-contact sensing, blade imbalance, Gaussian gradient, subpixel edge localization
全文待审
Yanling Cao / Beijing Institute of Technology; Zhuhai
Rongfeng Deng / Beijing Institute of Technology; Zhuhai
Dongqin Li / Beijing Institute of Technology, Zhuhai
Wind turbine blades frequently experience unexplained structural failures, contributing significantly to operational downtime and maintenance costs. Conventional vibration monitoring techniques, dependent on manual method or contact-based sensors, exhibit inherent limitations for rotating blade applications due to slip-ring reliability issues and installation constraints. Furthermore, monitoring these large-scale rotating blades poses substantial technical challenges. This study proposes a remote vision-based method for fault diagnosis by analyzing blade-dynamics information manifested in tower vibrations. A non-contact diagnostic framework exploits tower-blade coupled dynamics, utilizing a simplified 5-DOF model to demonstrate how mass imbalance and torsional anomalies induce quantifiable tower oscillations. The methodology employs subpixel-accurate edge localization, incorporating Gaussian filtering, gradient-based edge detection, and signed-gradient centroid refinement, to extract vibration signatures from video data. Experimental validation confirms effective detection of critical faults including mass imbalance and large-angle torsional deformation (identified via spectral shifts and rotational frequency reduction). Results correlate strongly with reference sensors, providing a cost-effective in-situ solution that overcomes contact-sensor limitations for rotating blade monitoring.
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询