269 / 2025-06-15 21:24:17
Multimodal Feature Fusion with Dual-Stream Network for Tool Condition Monitoring
tool condition monitoring,multimodal information fusion,efficientNet,deep learning
全文待审
Xing Shui / 武汉科技大学
Rui Yuan / 武汉科技大学
Yong Lv / 武汉科技大学
Hongan Wu / 武汉科技大学
Dengliang Zhu / 武汉科技大学
Data-driven tool condition monitoring (TCM) has gained increasing attention due to its high accuracy and adaptability in complex machining environments. Nevertheless, existing methods are often restricted to one-dimensional signal features or single-form image encodings, which leads to limited utilization, weak expression, and insufficient extraction of wear characteristics. To address these limitations, this paper proposes a multimodal image encoding strategy and a dual-stream cross-domain fusion network. Specifically, time series are transformed into RGB images via Recurrence Plots (RP), Short-Time Fourier Transform (STFT), and Gramian Angular Fields (GAF), thereby capturing time-frequency patterns, nonlinear dynamics, and trend information. Subsequently, a dual-stream architecture integrating EfficientNet and Gated Recurrent Unit (GRU) is constructed. The experimental results show that the method has high accuracy and versatility, and provides a practical solution for real-time TCM.
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询