243 / 2025-06-15 16:54:59
Optimization of early fault identification method for rotating machinery based on feature mode decomposition
Rotating machinery; Eigenmode decomposition; Early fault identification; Harris Hawks Optimization
全文待审
宋 超 / 陆军装甲兵学院
冯 辅周 / Army Academy of Armored Forces
刘 子钰 / Beijing General Institute of Electronic Engineering
Aiming at the influence of filter length L and the number of mode decompositions n on the decomposition effect of Feature Mode Decomposition (FMD), the Harris Hawks Optimization (HHO) algorithm is used to optimize the two preset parameters of FMD, and an early fault identification method is proposed with kurtosis, envelope spectrum peak factor, and Pearson correlation coefficient as the comprehensive objective functions. By comparing the comprehensive objective functions of various component signals with different preset parameters, selecting L and n corresponding to the minimum value as the final FMD parameters, and identifying the fault situation of rotating machinery by calculating the envelope spectrum characteristics of the components. After verification with the full life cycle data of bearings from XJTU-SY and diesel engine test bench data, this method has good early fault identification ability.
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询