218 / 2025-06-14 21:58:18
Meta-Learning-Based Fault Diagnosis Method for Multi-Rotor Unmanned Aerial Vehicles
Fault diagnosis,Multi-rotor UAV,RflyMAD,Meta-learning,Few-shot learning
终稿
Can Guo / National University of Defense Technology
Jingwei Gao / National University of Defense Technology
Addressing the critical challenges of scarce fault samples in multi-rotor UAVs operating under complex conditions and diagnostic difficulties from multi-source sensor fusion, this study develops a meta-learning-based framework for few-shot fault diagnosis. Utilizing the RflyMAD dataset from Beihang University's Reliable Flight Control Group, we systematically analyze sensor and actuator fault characteristics. A hierarchical meta-feature extraction network is proposed, integrating temporal feature learning and cross-sensor attention mechanisms. The framework implements three meta-learning approaches: Model-Agnostic Meta-Learning (MAML) for parameter adaptation, Memory-Augmented Neural Networks (MANN) for pattern retrieval, and Prototypical Networks (ProtoNet) for metric-based classification. This methodology provides a novel pathway for handling data-scarce fault diagnosis scenarios, demonstrating the potential to improve diagnostic efficiency while reducing dependency on large-scale fault data.

 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询