212 / 2025-06-14 14:48:03
A Multidimensional Data-Driven Algorithm for Operational Failure Prediction
Fault prediction,remote operation and maintenance,joint knowledge and data-driven
全文待审
晨瑄 李 / 北京
Data resource wastage, low equipment utilization, traffic overloads during bursts, memory leaks, and network device bandwidth saturation constitute major challenges hindering the intelligent development and operation of data centers worldwide. To enhance data resource utilization, detect potential equipment failures, and improve operational efficiency within aerospace flight control systems, this paper proposes a multidimensional data-driven fault prediction algorithm. A prediction model is constructed utilizing ARIMA and ConvLSTM techniques. This approach optimizes feature selection while simultaneously enhancing the algorithm's adaptability to complex data patterns and sudden anomalies. The hybrid spatiotemporal convolutional model effectively accommodates diverse monitoring metrics and demonstrates robust predictive capabilities for highly dynamic resource operation patterns. Experiments were conducted using a multidimensional dataset derived from the equipment. The results demonstrate that the proposed fault prediction method offers flexible adaptability across multiple application scenarios and achieves high overall fault prediction accuracy.
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询