202 / 2025-06-14 00:06:44
Deep Reinforcement Learning-Guided Adaptive Feature Extraction with Transformer Classification for Variable Speed Bearing Fault Diagnosis
Bearing fault diagnosis, variable speed machinery, Vold-Kalman filter, AMFEN, Self-Attention mechanism, Transformer
全文待审
Liren Pan / Zhenjiang Technician College Jiangsu Province
Leng Xue / Zhenjiang Technician College Jiangsu Province
Jialin Li / Zhenjiang Technician College Jiangsu Province
Di Zheng / Zhenjiang Technician College Jiangsu Province
Weilun Guo / Zhenjiang Technician College Jiangsu Province
Yongwei Su / Zhenjiang Technician College Jiangsu Province
The inherent non-stationarity of vibration signals from variable-speed rotating machinery poses significant challenges for traditional bearing fault diagnosis methods. This paper proposes a novel framework that synergistically integrates Deep Deterministic Policy Gradient (DDPG) optimization with an Adaptive Multi-scale Feature Extraction Network (AMFEN), self-attention mechanism and Transformer-based classification to address these challenges. The proposed methodology employs DDPG to adaptively optimize Vold-Kalman filter parameters for robust signal decomposition, eliminating the need for manual parameter tuning. Subsequently, 5 parallel AMFEN strategies extract complementary features from multiple domains, capturing comprehensive fault characteristics. A self-attention mechanism then intelligently selects the most discriminative features, reducing the dimensionality from 320 to 48 while preserving diagnostic information. Finally, a Transformer model performs fault classification, leveraging its superior capability in capturing feature dependencies and temporal patterns. Experimental validation on BGCF dataest demonstrates the framework's superior performance, achieving 97% diagnostic accuracy under variable speed conditions.

 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询