19 / 2025-04-28 17:12:51
Research on Fault Diagnosis Method for Antenna Drive Reducer Bearings Based on SVMD-CNN-LSTM Fusion
Antenna drive reducer bearing,Fault diagnosis,Successive Variational Mode Decomposition (SVMD),Convolutional-Long Short-Term Memory Neural Network (CNN-LSTM)
终稿
Shike Mo / Xinjiang University
Binbin Xiang / Xinjiang University
Wei Wang / Xinjiang University
Xuetong Yang / Xinjiang University
Longfei Niu / Xinjiang University
Yuming Fan / Xinjiang University

This paper constructs a fault diagnosis model for antenna drive reducer bearings based on the fusion of Successive Variational Mode Decomposition (SVMD) and Convolutional Long Short-Term Memory Neural Network (CNN-LSTM). SVMD is utilized to decompose bearing vibration signals, obtaining multiple Intrinsic Mode Functions (IMFs) which are used to construct the dataset. The CNN extracts local spatial features from the signals, while the LSTM captures temporal characteristics, enabling deep analysis of fault features. Experimental results demonstrate that the proposed model achieves a classification accuracy of 97.63%. Compared to CNN, CNN-LSTM, Transformer, and AlexNet models, the classification accuracy is improved by 5.94%, 2.42%, 1.12%, and 2.45%, respectively. This model provides a novel solution approach for fault diagnosis in antenna drive reducer bearings.

 

重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询