168 / 2025-06-10 19:01:29
Adaptive Reconstruction of Sensor Fault Data Based on CNN-LSTM Neural Network
data reconstruction,sensor fault,LSTM,CNN
全文录用
培鑫 邢 / 北京信息科技大学
然 贾 / 北京信息科技大学
涛 陈 / 北京信息科技大学
傲 吴 / 北京信息科技大学
Accurate condition monitoring is essential for ensuring efficient and reliable operation of integrated transmission systems, where sensor data reliability plays a critical role. To address this challenge, we propose a novel deep learning-based fault reconstruction model that exploits structural and temporal correlations among sensors. When sensor failures occur, our model automatically reconstructs faulty measurements while maintaining data accuracy, thereby enhancing system reliability and operational safety. The proposed framework also serves as a robust reference for subsequent fault diagnosis research.Methodologically, we first employ Exponentially Weighted Moving Average (EWMA) for data smoothing, followed by correlation analysis to identify highly interdependent sensor features. We then develop a hybrid Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) architecture to achieve precise sensor data reconstruction. Extensive case studies on integrated transmission systems with multiple sensor faults validate the model's reliability, accuracy, and effectiveness. Results demonstrate that our approach provides a technically sound and efficient solution for enhancing sensor reliability in complex transmission systems.
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询