Delay compensated Reinforcement Learning Predictive Control for Power Converters
编号:77 访问权限:仅限参会人 更新:2025-05-06 15:05:54 浏览:5次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This paper proposes a delay compensated reinforcement learning predictive control (DC-RLPC) solution for power converters. More precisely, an actor critic-based intelligent agent is integrated into the predictive control framework, establishing a model-free approach that eliminates the reliance on physical information. It enhances the robustness of model predictive control by mitigating the effects of unknown or unmodeled dynamics. Furthermore, a novel delay compensated Bellman equation is proposed, and the corresponding RL training algorithm is developed to address the digital delay in control systems. It lays the foundation for future practical applications of RL. Finally, the effectiveness of the proposed DC-RLPC is validated through numerical examples.
关键词
model predictive control,reinforcement learning,delay compensation,power converters,robustness
报告人
Chenghao Liu
Mr. Zhejiang University;the College of Electrical Engineering

稿件作者
Chenghao Liu Zhejiang University;the College of Electrical Engineering
Jien Ma Zhejiang University;the College of Electrical Engineering
Lin Qiu Zhejiang University;the College of Electrical Engineering
Xing Liu Shanghai Dianji University
Youtong Fang Zhejiang University;the College of Electrical Engineering
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询