Real-Time Adaptive MPC via Data-Driven Controller Learning on FPGA
编号:27 访问权限:仅限参会人 更新:2025-04-24 16:57:45 浏览:31次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This paper presents a performance-driven adaptive Model Predictive Control (MPC) framework tailored for highfrequency
power converters. By integrating offline optimization with supervised learning, our approach automatically tunes the MPC
parameters to optimize closed-loop performance metrics—specifically, settling time and overshoot. A lightweight, quantization-aware multi-layer perceptron (MLP) is trained to map operating conditions and user-defined performance weights to the optimal weighting matrices in quadratic loss function, enabling rapid, on-the-fly parameter adaptation without incurring online training overhead. The entire framework is implemented on an FPGA using High-Level Synthesis, achieving sub-microsecond inference latency necessary for GaN-based converters operating at MHz-level switching frequencies. Experimental validation on a 12V-3.3V, 1MHz Buck converter demonstrates reduction in voltage overshoot and improvement in settling time compared to fixed-parameter MPC, while maintaining robust performance under varying load conditions. This work effectively bridges model-based control and data-driven learning, offering a promising solution for real-time adaptive control in high-performance power electronics.
关键词
FPGA(Field-Programmable Gate Array),Controller Learning,Adaptive MPC,GaN-based DC-DC Converter
报告人
Qingcheng SUI
PhD Researcher KU Leuven - EnergyVille

稿件作者
Qingcheng SUI KU Leuven - EnergyVille
Bangli Du KU Leuven - EnergyVille
Yu Zuo KU Leuven - EnergyVille
Wilmar Martinez KU Leuven - EnergyVille
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询