MTPA-Based Sequential Model Predictive Control of Induction Motors
编号:119 访问权限:仅限参会人 更新:2025-05-06 15:16:24 浏览:7次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Abstract—Recently, sequential model predictive control (SMPC) has been proposed, eliminating the necessity of weighting factors by exploiting the hierarchical structure of cost functions. In conventional SMPC, to meet all load conditions, flux reference is set to the nominal value of the induction motor, leading to suboptimal operation. This paper incorporates Maximum Torque Per Ampere (MTPA) principles with SMPC to generate a proper flux reference. By doing so, the stator current amplitude and consequently the losses are reduced in light load conditions. Moreover, the number of voltage vectors (VVs) selected by the first cost function varies between two and three according to the load condition. Finally, the simulation results demonstrate the effectiveness of the proposed method in stator current amplitude and loss reduction.
 
关键词
Sequential MPC,MODEL PREDICTIVE CONTROL,Model Predictive Torque Control (MPTC),MTPA,Induction motor
报告人
Jose Rodriguez
Professor Universidad San Sebastian

稿件作者
Ali Haddadi Iran University of Science and Technology
Mahdi Bahmani Iran University of Science and Technology
Davood Arab Khaburi Iran University of Science and Technology
Cristian Garcia Universidad de Talca
Jose Rodriguez Universidad San Sebastian
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询