Data-Driven Receding Horizon Predictive Current Control for PMSM Drives Using Ultralocal Model
编号:100 访问权限:仅限参会人 更新:2025-05-06 15:12:18 浏览:8次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Traditional model-free predictive current control (MFPCC) improves system robustness by eliminating parameter dependency; however, it still exhibits limitations in terms of disturbance rejection performance and dynamic response characteristics. This paper proposes a new data-driven receding horizon predictive current control (DDRHPCC) method that integrates a multi-step ultra-local model with a generalized receding horizon estimator (GRHE) to further optimize the control performance of permanent magnet synchronous motor (PMSM) drives. The multi-step ultra-local model replaces the traditional motor model to establish a multi-step prediction framework relying solely on system input-output data. This approach avoids parameter sensitivity and strengthens long-term prediction capability. Furthermore, GRHE is designed to estimate unmodeled dynamics, external disturbances, and parameter variations in real time. By compensating for these factors, GRHE solves the problem of insufficient anti-interference ability caused by model simplification in traditional MFPCC. Utilizing pre-estimation disturbance information, the GRHE optimizes error estimation, significantly improving disturbance rejection capability and state estimation accuracy. Simulation results validated the effectiveness of the proposed method.
关键词
Data-Driven predictive control, Multi-step ultralocal model, Generalized receding horizon estimator, Permanent magnet synchronous machine
报告人
Zihao Chen
postgraduate Zhejiang University of Technology

稿件作者
Zihao Chen Zhejiang University of Technology
RuoCheng Wang Zhejiang University of Technology
Junxiao Wang liuhe road 288; liuxia street; xihu district; Hangzhou 310023
Jun Yang Loughborough University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月05日

    2025

    06月08日

    2025

  • 04月30日 2025

    初稿截稿日期

主办单位
IEEE PELS
IEEE
承办单位
Southeast University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询