An Improved YOLOv8 Detection Model for Catenary Components Using Long-Distance Feature Dependence
编号:128 访问权限:仅限参会人 更新:2024-10-23 10:02:34 浏览:196次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
In the condition monitoring system of high-speed railway catenary support components, the positioning and recognition performance directly affects the performance of the state detection tasks such as anomaly detection and defect recognition. Due to limitations such as complex background and long-distance feature extraction, traditional defect detection methods have difficulty fully exerting their detection performance. Therefore, an improved YOLOv8 model is proposed to solve these detection problems. First, a long short-term memory (LSTM) module is added to the backbone middle layer to more effectively capture the object’s long-distance dependencies, improving the ability to extract long-distance features in sequence data. Secondly, a large separable kernel attention (LSKA) module is introduced to the spatial pyramid pooling feature (SPPF) layer to further improve the model’s ability to capture long-range image dependencies. Experimental results show that the detection framework achieves a detection accuracy (mean average precision, mAP) of 75.3% while maintaining low computational complexity, proving its effectiveness in catenary detection. Therefore, the proposed method can be effectively applied to the detection task of catenary components.
关键词
High-speed railway, YOLOv8, catenary support component detection, Long-distance dependency.
报告人
ShiLinjun
研究生 西南交通大学

稿件作者
ShiLinjun 西南交通大学
LiuWenqiang 西南交通大学;香港理工大学
YangHaonan 西南交通大学
MaNing 西南交通大学
LiuZhigang 西南交通大学
ChenXing 西南交通大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询