Application of scene transfer algorithm in abalone measurement
编号:1463 访问权限:仅限参会人 更新:2025-01-04 12:47:17 浏览:207次 张贴报告

报告开始:2025年01月15日 18:50(Asia/Shanghai)

报告时间:15min

所在会场:[S32] Session 32-Digital Twins of the Ocean (DTO) and Its Applications [S32-P] Digital Twins of the Ocean (DTO) and Its Applications

暂无文件

摘要
When using deep stereo networks to predict disparity maps in real-world scenes, the network's accuracy tends to decline. This is due to the differences between dataset images and actual scene images. To enhance the network's performance in real-world scenarios, fine-tuning of the network parameters is necessary. In practice, underwater images can be easily obtained, but the corresponding disparity labels for training the network are difficult to acquire. This paper employs an unsupervised learning approach to fine-tune the network  using underwater images, allowing the stereo-matching network to achieve better performance in underwater environments. The network is applied to the measurement of abalone. 
关键词
stereo matching, deep learning, unsupervised learning, underwater measurement
报告人
Yuehang Chen
Master Xiamen University

稿件作者
Yuehang Chen Xiamen University
Dongyun Lin Xiamen University
Weiyao Lan Xiamen University
Binren Li Xiamen University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询