1288 / 2024-09-20 22:54:13
Impacts of Mid-Pliocene Ice Sheets and Vegetation on AfroAsian Summer Monsoon Rainfall Revealed by EC-Earth Simulations
mid-Pliocene,Atmospheric effects,ice sheet,Monsoon dynamics
摘要录用
Zixuan Han / Hohai University
Qiong Zhang / Stockholm Univisity
The impact of mid-Pliocene boundary conditions on Afro-Asian summer monsoon (AfroASM) rainfall is examined using the fully coupled Earth System Model EC-Earth3-LR. Our focus lies on the effects of varying CO2 concentration, diminished ice sheets and vegetation dynamics. We find that the enhanced AfroASM rainfall is predominantly caused by the “warmer-gets-wetter” mechanism due to elevated CO2 levels. Additionally, the ice sheet, similar in size to that of the mid-Pliocene era, creates several indirect effects. These include sea ice-albedo feedback and inter-hemispheric atmosphere energy transport. Such influences result in the southward shift of Hadley circulation and formation of Pacific-Japan pattern, leading to reduced rainfall in North African and South Asian monsoon regions but increased rainfall in East Asian monsoon region. Interestingly, while dynamic vegetation feedback has a minimal direct effect on AfroASM rainfall, it significantly influences rainfall in the mid-high latitudes of the North Hemisphere by enhancing water vapor feedback.
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询