1196 / 2024-09-20 15:17:02
The temperature effects of Ammonia oxidation and associated nitrous oxide production in the coastal waters
Ammonia oxidation, nitrous oxide,isotope labeling techniques, warming
摘要录用
TONG LIU / Hainan University
Zhenzhen Zheng / Hainan University

Ammonia oxidation, mediated by microorganisms, converts ammonia into nitrite, a crucial step in organic matter decomposition and a central link in the nitrogen cycle. This process consumes oxygen, releases hydrogen ions, and produces greenhouse gas nitrous oxide (N₂O), making it closely relate to major environmental and climate issues such as coastal hypoxia, acidification, and global warming. Due to the limitations of trace N₂O measurement techniques, current research on the response of ammonia oxidation to warming has primarily focused on ammonia oxidation rates, with little investigation into the thermal response of its by-product, N₂O. This study utilized isotope labeling techniques to explore the temperature response characteristics of both ammonia oxidation rates and N₂O production rates in eutrophic coastal waters. The results show that, below the optimal temperature, both ammonia oxidation rates and N₂O production rates increase with rising temperatures. However, when temperatures exceed the optimal threshold, these rates decline with further increases in temperature. Notably, the temperature sensitivity coefficient (Q10) of N₂O production (2.3 ± 0.6) is greater than that of ammonia oxidation, suggesting that predictive biogeochemical and climate models need to include the differing temperature response characteristics of ammonia oxidation and N₂O production rates.

重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询