53 / 2024-10-15 10:32:14
Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency
Replication origin, Topologically associating domain (TAD,Super-resolution imaging, STORM
摘要录用
李永正 / 吉林大学基础医学院
Background: Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigeneticsignatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined.

Results: We apply dual-color stochastic optical reconstruction microscopy (STORM) superresolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired.

Conclusion: Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.

Recent unpublished work: Recently, we explored DNA replication origin firing and DNA damage upon mis-regulated chromatin organization in Lamin A/C deficient models.

 
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 11月03日 2024

    注册截止日期

主办单位
崖州湾国家实验室
华中农业大学
浙江大学
中国遗传学会
中国遗传学会三维基因组学专委会
承办单位
中国生物信息学基因组信息学专委会
中国遗传学会表观遗传分会
中国细胞生物学学会染色质生物学分会
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询