中国站
国际站
软件
办会软件
网络研讨会
视频会议
虚拟会议
机构版
下载与演示
会议
专业分类
国内活动
海外活动
报告频道
索引
服务
创建活动
讲座
研讨会/课程
会议
登录
注册
2024年中国POMS国际会议
2024 POMS International Conference in China
2024年06月28日~07月01日
中国 · 合肥市
会议
线下活动
线上直播
0
浏览
0
条评论
官网
收藏
分享
摘要详情
活动首页
摘要清单
摘要详情
ID / 提交时间
58
/ 2024-04-18 09:11:30
标题
An End-to-end Model for Share-of-choice Product Line Design Problem
关键字
Product Line Design,Prescriptive Analytics,Polyhedral Estimation,Adaptive Conjoint Analysis.
主题及专题
14、数据驱动运营管理
状态
摘要待审
作者
刘懋圻 / 山东大学管理学院
摘要
This paper studies the share-of-choice product line design problem, where decision-makers aim to maximize
the market share, i.e., the percentage of the consumers to whom at least one product delivers a non-negative
utility. Because the customers’ utilities are not directly observable, the input utilities of the existing models
need to be estimated from some primitive data. The conjoint analysis, which asks respondents to evaluate
a set of products, is the main source of such data. However, with the limited survey questions, the utilities
cannot be precisely estimated, and therefore, the models that plugin the estimated utilities cannot identify
the optimal solution and corresponding market share. In this study, by applying the polyhedral method in
utility calibration and robust optimization techniques, we propose a novel end-to-end model inputting the
survey data and outputting the data-driven design. Importantly, we provide guarantees of the market share
of the returned product line design. For a general product line design problem, we provide the guarantees
related to the size of the set containing all possible utilities consistent with the survey data. For a single
product design special case, our model can identify the optimal design within an explored set of all the
linear combinations of the delivered questions and guarantee the market share even if the uncertainty sets
are unbounded. We further develop an adaptive conjoint analysis where new questions better align with
the proposed model are added based on its solution. The proposed adaptive conjoint analysis is proven to
recover the customer utilities within finite rounds. Through extensive numerical experiments, we show that
the proposed model significantly outperforms the “estimate-then-optimize” model and the proposed adaptive
conjoint analysis can generate more efficient questions to fit the proposed model.
活动首页
活动日程
时刻表
摘要清单
报告清单
直播与回放
活动商城
活动相册
我的审稿
管理活动
重要日期
会议日期
06月28日
2024
至
07月01日
2024
07月01日
2024
注册截止日期
主办单位
中国科学技术大学
协办单位
管理科学与工程学会
联系方式
蔡雨汀
po******@ustc.edu.cn
187********
登录查看完整联系方式
联系方式
×
提示
×
即将访问第三方域名
您即将访问第三方域名,请注意您的账号和财产安全。
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或
点此
咨询