369 / 2024-03-22 14:50:25
Reinforcement Learning-Driven Heuristic Path Planning Method for Automated Special Vehicles in Unstructured Environment
Unstructured rugged terrain,Automated special vehicles (ASVs),Global path planning,A* algorithm,Reinforcement learning (RL)
全文录用
飞翔 徐 / 中国矿业大学
衍辰 王 / 中国矿业大学
晨 周 / 中国矿业大学
仕咏 冯 / 中国矿业大学
鹏程 王 / 中国矿业大学
德强 程 / 中国矿业大学
Aiming at improving the adaptability of global path planning method for the automated special vehicles (ASVs) in a variety of unstructured environments, a reinforcement learning (RL)-driven heuristic path planning method is proposed. The introduction of traditional heuristic algorithm avoids inefficiency of RL in the early learning phase, and it provides a preliminary planning path to be adjusted by RL. Meanwhile, a reward function is designed based on vehicle dynamics to generate a smooth, stable, and efficient path. The simulation environment is established based on real terrain data. The algorithm performance is tested through setting different starting and ending points, and conducting seven cases. And the distribution of different obstacles on the path planning influence of the ASVs is discussed. Results verify that the proposed method can get a collision free and efficient path with excellent adaptability to complex terrains.

 
重要日期
  • 会议日期

    05月29日

    2024

    06月01日

    2024

  • 05月08日 2024

    初稿截稿日期

主办单位
中国矿业大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询