21 / 2024-06-21 23:06:10
Cryogenic setup for the characterization of novel optical amplification structures (MPGD-based) for Dark Matter searches
Dark matter,wavelength-shifting materials,micropattern gageous detectors,WLS FAT-GEMs,electroluminescence
摘要录用
André Cortez / Astrocent; CAMK PAN

Compelling astrophysical and cosmological evidence for the existence of dark matter (DM) has led to numerous direct detection experiments, including DarkSide, XENON, LZ, etc., searching for particle DM candidates. These experiments rely on noble liquid detectors, in which vacuum ultraviolet (VUV) scintillation or scintillation and ionization, induced by elastic scattering of WIMPs on nuclei, is registered.

One of the main challenges in argon-based detectors is the relatively low efficiency of available VUV-optimized photosensors. This limitation makes light collection and detection of S1 and S2 light in liquid argon (LAr) challenging. Therefore, efficient wavelength shifter (WLS) materials are needed to enable light collection with standard photosensors.



Over the past decade a significant progress was observed in the development of new optical amplification structures, including new WLS materials and methods of applying these to new structures capable of enhancing scintillation light detection. As future experiments require much larger target masses (multi-ton scale) to improve current sensitivity limits, new optical amplification structures/technologies scalable to such sizes are mandatory to improve or even maintain the performance of these detectors. One such example is the recently developed WLS FAT-GEM (wavelength-shifting field-assisted transparent gaseous electroluminescence multiplier) that combines the characteristics of FAT-GEMs with reflecting and WLS coatings to maximize S2 light collection, which opens the possibility to the scale-up of future Dark Matter detectors.



In this work the plans for development of novel optical amplification structures, namely a floating FAT-GEM (Field-Assisted Transparent Gaseous Electroluminescence Multiplier) with wavelength-shifting capabilities (WLS FAT-GEM) will be discuss. A cryogenic setup, recently commissioned for studying new wavelength-shifting materials for optimised light collection in noble element radiation detectors, will be presented along with its first reasults and its new extension that enables the study of these MPGD-based structures, potentially interesting for rare-event searches.

重要日期
  • 会议日期

    10月13日

    2024

    10月18日

    2024

  • 10月18日 2024

    报告提交截止日期

  • 10月31日 2024

    初稿截稿日期

  • 01月31日 2025

    注册截止日期

主办单位
University of Science and Technology of China
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询