255 / 2023-09-30 16:02:34
A HYBRID DEEP LEARNING APPROACH FOR GROUND OBJECT INFORMATION EXTRACTION FROM HYPERSPECTRAL IMAGES USING DEEP LEARNING APPROACH
Ground Object Information, Hyperspectral Images, Wingsuit Spotted-Hyena Optimizer, Modified Bi-LSTM.
摘要待审
AMMARA GILL / HENAN POLYTECHNIC UNIVERSITY
Ground object information extraction out of hyperspectral images refers to the process of identifying and characterizing different materials or objects present on the earth's exterior using hyperspectral imaging technology. Hyperspectral imaging captures images in hundreds of small and adjacent spectral bands, providing more detailed and accurate information about the materials present in the scene. Hyperspectral data is high-dimensional, which can make it challenging to visualize and analyze. This can make it difficult to identify patterns or trends in the data, and can also make it challenging to interpret the results of classification algorithms. In this research work, collected raw images (GIS images) are pre-processed via Augumented median filtering and CLAHE approach. From the pre-processed images, the features like Haralick features, Normalized Difference Vegetation Index (NDVI), Standardized Vegetation



Index (SVI), correlation coefficient, Green-NDVI (GNDVI), Simple Ratio (SR), and Red-edge Simple Ratio (SRre) based features are extracted. Among the extracted features, the optimal features are preferred utilizing a new hybrid optimization model stated to as Wingsuit SpottedHyena Optimizer (WSHO) model. This WSHO model is the conceptual blend of standard Wingsuit Flying Search (WFS) and Spotted Hyena Optimizer (SHO) Mineral Exploration phase is modelled with a three-fold-deep-learning-classifiers framework (proposed). The threefold-deep-learning-classifiers framework encapsulates the Support Vector Machine (SVM), Random Forest (RF), and modified Bi-LSTM. SVM and RF are trained with the selected optimal features acquired from WSHO. The outcome from SVM and RF is fed as input to Modified Bi-LSTM. To further enhance the detection accuracy, the loss function of Bi-LSTM is modified. The proposed model is implemented by PYTHON and validated in terms of various performance metrics.
重要日期
  • 会议日期

    10月26日

    2023

    10月29日

    2023

  • 10月15日 2023

    摘要截稿日期

  • 10月15日 2023

    初稿截稿日期

  • 11月13日 2023

    注册截止日期

主办单位
国际矿山测量协会
中国煤炭学会
中国测绘学会
承办单位
中国矿业大学
中国煤炭科工集团有限公司
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询