Compound pollution of fine particulate matter and surface ozone in China from 2015 to 2020: spatiotemporal patterns, health risks and synergistic control pathways
编号:3646 访问权限:私有 更新:2023-04-16 17:49:43 浏览:220次 口头报告

报告开始:2023年05月06日 16:10(Asia/Shanghai)

报告时间:15min

所在会场:[14C] 14C、气溶胶与大气环境 [14c-1] 14C-1 气溶胶与大气环境

演示文件

提示:该报告下的文件权限为私有,您尚未登录,暂时无法查看。

摘要
The increasingly pronounced compound pollution issue of fine particulate matter (PM2.5) and surface ozone (O3) concentrations in China has exacerbated the risk of human morbidity and death. In this study, the spatial and temporal characteristics, health risks and synergistic control pathways of PM2.5­–O3 compound pollution in 365 cities in China from 2015 to 2020 were investigated based on spatial statistical analysis, integrated risk index model and spatial correlation analysis. The results show that: The strict air pollution control measures lead to a sustained decrease in PM2.5 leading polluted cities and a sustained increase in clean cities during the study period. However, there is a trend of increasing (2015–2017) and then decreasing (2018–2020) in cities with compound PM2.5 and O3 pollution because of changes in volatile organic compounds (VOCs) and NOx caused by human activities. According to the exposure analysis method, the population exposed to PM2.5 dominated polluted cities declined by 471 million from 2015 to 2020; in contrast, the population living in clean cities increased by 460 million. With the intensification of PM2.5–O3 compound pollution in China, the exposure to PM2.5–O3 compound pollution urban population increases sharply from 349 million in 2015 to 622.5 million in 2018, an increase of more than 40%; as air quality improves after 2017, the population exposed to PM2.5–O3 compound pollution gradually decreases, falling to the equivalent level in 2015 by 2020. Meanwhile, the population health risks attributed to PM2.5 pollution were reduced, whereas the population health risks attributed to PM2.5–O3 compound pollution were aggravated. From a spatial perspective, PM2.5–O3 compound pollution and health risk exacerbation regions were concentrated in northern and eastern China. In addition, we found that PM2.5 and O3 concentrations have significant synergistic trends,which are consistent with VOC and NOx in spatial distribution, which is conducive to the synergistic management of PM2.5 and O3 in China.
 
关键词
PM2.5¬–O3 compound pollution,Temporal spatial patterns,Integrated Health Risks,synergistic control pathways,China
报告人
何超
长江大学

稿件作者
何超 长江大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月05日

    2023

    05月08日

    2023

  • 03月31日 2023

    初稿截稿日期

  • 05月25日 2023

    注册截止日期

主办单位
青年地学论坛理事会
中国科学院青年创新促进会地学分会
承办单位
武汉大学
中国科学院精密测量科学与技术创新研究院
中国地质大学(武汉)
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询