Dust dominates the summer melting of glacier ablation zones on the northeastern Tibetan Plateau
编号:2175 访问权限:私有 更新:2023-04-25 17:21:12 浏览:187次 口头报告

报告开始:2023年05月06日 15:58(Asia/Shanghai)

报告时间:12min

所在会场:[18A] 18A、冰冻圈科学 [18A-1] 18A-1 冰冻圈科学

演示文件

提示:该报告下的文件权限为私有,您尚未登录,暂时无法查看。

摘要
Dust and black carbon (BC) can darken snow and ice surface and play pivotal roles in glacier mass loss. Thus, a quantitative assessment of their contributions to glacier summer melting is critical. During the summer of 2018, surface snow and ice were sampled, and the albedo and mass balance were continuously measured in the ablation zone of Laohugou Glacier No. 12 in the western Qilian Mountains. The physical properties of dust and BC were measured in the laboratory, and their impacts on glacier surface albedo reduction and melting were simulated. The results indicate that the ice surface in the ablation zone was enriched with substantial amounts of particles, and the average particle concentrations of these samples were hundreds of times higher than those of fresh snow. The BC mass absorption cross-sections (MACs) ranged from 3.1 m2 g−1 at 550 nm for dirty ice to 4.6 m2 g−1 for fresh snow, largely owing to meltwater percolation and particle collapse. The spectral variations in dust MACs were significantly different in the visible light bands and near-infrared bands from those in the other areas. Moreover, the two-layer surface energy and mass balance model with the new albedo parameterization formula was validated and agreed well with the experimental measurements of spectral albedo, broadband albedo, and mass balance. BC and dust combined resulted in 26.7% and 54.4% of the total mass loss on the cleaner and dirtier (particle enriched) surfaces in the ablation zone, respectively, compared to particle-free surfaces, and although both impurities played vital roles, dust was the more prominent factor in accelerating glacier melting on the northeastern Tibetan Plateau. This study emphasizes the importance of dust in cryosphere changes where Tibetan glaciers are strongly affected by Asian dust deposition.
 
关键词
dust; black carbon; spectral albedo; enhanced melting; Tibetan Plateau
报告人
李洋
云南大学

稿件作者
李洋 云南大学国际河流与生态安全研究院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月05日

    2023

    05月08日

    2023

  • 03月31日 2023

    初稿截稿日期

  • 05月25日 2023

    注册截止日期

主办单位
青年地学论坛理事会
中国科学院青年创新促进会地学分会
承办单位
武汉大学
中国科学院精密测量科学与技术创新研究院
中国地质大学(武汉)
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询