成矿流体液–液不混溶作用判识及不混溶流体密度测定
编号:1968 访问权限:私有 更新:2023-04-10 23:06:56 浏览:157次 特邀报告

报告开始:2023年05月07日 17:15(Asia/Shanghai)

报告时间:15min

所在会场:[16A] 16A、矿产与资源 [16A-3] 16A-3 矿产与资源>构造控矿;成矿实验

暂无文件

摘要
成矿流体的相态变化可对热液矿床的形成产生重要影响(Heinrich,2007)。除了流体出溶及沸腾作用外,实验研究发现部分典型成矿流体(含REE-SO4、Zn-SO4、Li-SO4、Na-SO4等流体)在一定的温-压范围内可发生较为特殊的液–液不混溶作用,即均一流体分离出高密度液相与低密度液相(Valyashko,2008;Wang等,2013,2016,2017;Wan等,2021;Cui等,2021)。原位拉曼光谱定量分析显示相关成矿金属在两种液相中的分配行为存在明显差异,因此推测液–液相分离可对成矿元素的迁移、富集产生重要影响(Wang等,2016,2017;Wan等,2021a)。然而,由于缺少对不混溶液相物理性质(密度、粘度)的限定,研究人员难以精确刻画由物理性质差异而导致的两种液相分离过程,进而限制了对液–液不混溶作用效果的评估(Zhang等,2020)。本研究结合原位拉曼光谱定量分析、质量守恒计算及硅管中流体体积分析等方法,测定了不混溶液相的密度。结果显示,贫溶质流体相与纯水密度相近,而富溶质相密度远高于贫溶质相,可达2 g/cm3。不混溶液相密度存在巨大差异,这将导致不混溶液相迁移活性明显不同,并促进两种液相高效分离及高品位矿床的形成。此外,建立合适的地球化学指标,是判识地质条件下液–液不混溶作用并探讨其成矿效应的前提。本研究通过拉曼光谱分析两种典型组分(SO42-:液–液不混溶关联组分;ClO4-:液–液不混溶非关联组分)在ZnSO4–Zn(ClO4)2–H2O体系液-液不混溶及沸腾过程中的分配行为,开展了定量分析。结果显示,沸腾过程中SO42-与ClO4-被同等程度地富集于残余液相中。而在液–液相分离过程中,二者的分配行为存在明显差异,SO42-在高密度液相中明显富集而在低密度相中浓度很低,而ClO4-在两不混溶液相中的浓度相近(Wan等,2021b)。综合已有研究结果,我们提出了一套地质流体液–液不混溶的判识标志:1、流体中含一定的液–液不混溶关联组分并具备发生液–液不混溶的潜力,且流体的T–P–x演化路径与该体系的液–液不混溶稳定域存在重叠;2、由单期流体所形成的流体包裹体群中液–液不混溶关联组分浓度存在明显差异,而低挥发性的液–液不混溶非关联组分不呈现明显的浓度差异;3、结合其他分析手段,评估外来流体混入、水岩反应等过程的影响,综合判别液–液相分离的发生。


参考文献:
Cui H., Zhong R., Xie Y., Wang X., & Chen H. Melt–fluid and fluid–fluid immiscibility in a Na2SO4–SiO2–H2O system and implications for the formation of rare earth deposits. Acta Geologica Sinica‐English Edition, 2021, 95(5), 1604–1610.
Heinrich C. A. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews in Mineralogy and Geochemistry[J], 2007, 65(1), 363–387.
Valyashko V. M. Phase equilibria in binary and ternary hydrothermal systems[M]. 2008, 1-133.
Wan Y., Wang X., Chou I-M., & Li X. Role of sulfate in the transport and enrichment of REE in hydrothermal systems. Earth and Planetary Science Letters[J], 2021a, 569, 117068.
Wan Y., Chou I-M., Wang X., & Sun X. Explorations on footprints of salt-rich fluid and salt-depleted fluid immiscibility in hydrothermal systems: Insights from divergent partitioning of sulfate and perchlorate in the ZnSO4–Zn (ClO4) 2–H2O system. Chemical Geology[J], 2021b, 584, 120520.
Wang X., Chou I-M., Hu W., & Burruss R. C. In situ observations of liquid–liquid phase separation in aqueous MgSO4 solutions: Geological and geochemical implications. Geochimica et Cosmochimica Acta[J], 2013, 103, 1–10.
Wang X., Wan Y., Hu W., et al. In situ observations of liquid–liquid phase separation in aqueous ZnSO4 solutions at temperatures up to 400 °C: Implications for Zn2+–SO42− association and evolution of submarine hydrothermal fluids. Geochimica et Cosmochimica Acta, 2016, 181, 126–143.
Wang X., Wang X., Chou I-M., et al. . Properties of lithium under hydrothermal conditions revealed by in situ Raman spectroscopic characterization of Li2O-SO3-H2O (D2O) systems at temperatures up to 420 °C. Chemical Geology[J], 2017, 451, 104–115.
Zhang Z., Wu, B., Wang, T., & Hui, H. Settling of immiscible droplets: a theoretical model for the missing link between microscopic and outcrop observations. Journal of Geophysical Research: Solid Earth[J], 2020, 125(6), 1–19.
 
 

 
关键词
成矿作用,热液,液-液不混溶,判识标志,密度
报告人
万野
中国科学院深海科学与工程研究所

稿件作者
万野 中国科学院深海科学与工程研究所
周义明 中国科学院深海科学与工程研究所
王小林 南京大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月05日

    2023

    05月08日

    2023

  • 03月31日 2023

    初稿截稿日期

  • 05月25日 2023

    注册截止日期

主办单位
青年地学论坛理事会
中国科学院青年创新促进会地学分会
承办单位
武汉大学
中国科学院精密测量科学与技术创新研究院
中国地质大学(武汉)
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询