重建-模拟对比研究揭示的全新世东亚夏季风时空变化
编号:1238 访问权限:私有 更新:2023-04-09 22:29:29 浏览:194次 特邀报告

报告开始:2023年05月07日 13:20(Asia/Shanghai)

报告时间:20min

所在会场:[1B] 1B、第四纪地质与全球变化 [1B-3] 1B-3 第四纪地质与全球变化

暂无文件

摘要
Conflicting reconstructions of Holocene variability of the East Asian summer monsoon (EASM) from speleothem versus other types of proxy records have yielded widely divergent estimates of its phase relationship with the Indian summer monsoon (ISM) and Northern Hemisphere summer insolation (NHSI). This apparent discrepancy has been partly attributed to the uncertainties in the climatic representation of Chinese speleothem oxygen isotope (δ18O) records. Here we present a composite speleothem δ18O record of the last ~14 kyr from Shennong Cave in southeastern China and model-simulated data of rainfall and meteoric δ18O over eastern China. Our synthesis of the proxy-model data suggests that the spatial patterns in both speleothem δ18O and paleo-rainfall over eastern China during the Holocene are diverse at orbital and multi-millennial scales. Our findings imply that: 1) speleothem δ18O in the EASM regime is largely controlled by the large-scale circulation and concomitant latitudinal shifts of the monsoon rain belt; notwithstanding the heterogeneous spatiotemporal pattern of Holocene rainfall as inferred from various proxy records, a coherent orbital-scale speleothem δ18O variability across most Asian monsoon regions (except southeastern China) indeed stems from the NHSI-forced changes in overall monsoon intensity; overall monsoon intensity is not equivalent to monsoon rainfall amount but a manifestation of the large-scale atmospheric circulation; 2) divergent phase relationships with NHSI between speleothem δ18O and other proxy records are consistent with—rather than contradictory to—the NHSI forcing mechanism. Speleothem δ18O and rainfall records reflect two different aspects of the monsoon dynamics. These results may thus, largely help to reconcile the divergent views of the Holocene Asian monsoon variability.
Conflicting reconstructions of Holocene variability of the East Asian summer monsoon (EASM) from speleothem versus other types of proxy records have yielded widely divergent estimates of its phase relationship with the Indian summer monsoon (ISM) and Northern Hemisphere summer insolation (NHSI). This apparent discrepancy has been partly attributed to the uncertainties in the climatic representation of Chinese speleothem oxygen isotope (δ18O) records. Here we present a composite speleothem δ18O record of the last ~14 kyr from Shennong Cave in southeastern China and model-simulated data of rainfall and meteoric δ18O over eastern China. Our synthesis of the proxy-model data suggests that the spatial patterns in both speleothem δ18O and paleo-rainfall over eastern China during the Holocene are diverse at orbital and multi-millennial scales. Our findings imply that: 1) speleothem δ18O in the EASM regime is largely controlled by the large-scale circulation and concomitant latitudinal shifts of the monsoon rain belt; notwithstanding the heterogeneous spatiotemporal pattern of Holocene rainfall as inferred from various proxy records, a coherent orbital-scale speleothem δ18O variability across most Asian monsoon regions (except southeastern China) indeed stems from the NHSI-forced changes in overall monsoon intensity; overall monsoon intensity is not equivalent to monsoon rainfall amount but a manifestation of the large-scale atmospheric circulation; 2) divergent phase relationships with NHSI between speleothem δ18O and other proxy records are consistent with—rather than contradictory to—the NHSI forcing mechanism. Speleothem δ18O and rainfall records reflect two different aspects of the monsoon dynamics. These results may thus, largely help to reconcile the divergent views of the Holocene Asian monsoon variability.
 
关键词
石笋;东亚夏季风;全新世;时空变化
报告人
张海伟
西安交通大学

稿件作者
张海伟 西安交通大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月05日

    2023

    05月08日

    2023

  • 03月31日 2023

    初稿截稿日期

  • 05月25日 2023

    注册截止日期

主办单位
青年地学论坛理事会
中国科学院青年创新促进会地学分会
承办单位
武汉大学
中国科学院精密测量科学与技术创新研究院
中国地质大学(武汉)
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询