A Vision-based Overload Detection System for Land Transportation
编号:915 访问权限:仅限参会人 更新:2021-12-14 12:32:36 浏览:76次 张贴报告

报告开始:2021年12月17日 08:04(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T6] Track 6 Future Transportation and Modern Logistics

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Overloaded trucks pose a severe threat to highway traffic, increasing the rate and severity of accidents, while damaging road infrastructure. Enabling an efficient and low-cost overload detection method at existing weighing stations would facilitate regulatory compliance. This paper presents a real-time, accurate truck overload detection system that leverages existing surveillance cameras installed at weighing stations. To achieve this goal, we applied computer vision algorithms on video from an indoor camera monitoring a digital display and on another outdoor camera monitoring the station’s weighing bridge. The truck’s actual weight is obtained by reading the numeric digit display on images from the indoor camera, while the truck’s maximum load capacity is estimated by recognizing the its wheel layout using the video from the outdoor camera. Through evaluation using video data from a weighing station, the optical digit recognition algorithm achieves an accuracy of 99.0%, while the load capacity estimation algorithm achieves an accuracy of 93.18%. Furthermore, our system can achieve an accuracy of over 90% among 21 overload events. Finally, we conclude with a discussion of potential optimizations and other future work.
关键词
numeric digit recognition;smart weighing station;vehicle classification;overload detection
报告人
Yuntao Wang
Assistant Professor Tsinghua University

稿件作者
Yuntao Wang Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询