Prediction of short-term urban rail transit ridership using wavelet transform and ARMA model
编号:661 访问权限:仅限参会人 更新:2021-12-03 10:26:26 浏览:101次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Abstract: A short-term urban rail transit flow prediction method is established to minimize the nonlinearity and randomness of urban rail transit flow in a short period. The urban rail transit stations can be clustered to four clusters using the K-means method, which are urban rail transit interchange station, multimode transportation terminal, commuting station, and common station. The ARMA model and the wavelet ARMA combination model are then applied to predict the short-term urban transit flow using both trend and random errors features of the original flow to predict the flow in the next time interval. The prediction results using field-collected data from Xi’an metro line 2 indicate that the wavelet ARMA combined model predictive effect is better than the single ARMA model, and Wavelet ARMA combination model can predict the flow for each category stations with reliable accuracy and robustness. The proposed method can provide a theoretical reference for urban rail transit operation management. Keywords: urban rail transit, clustering analysis of metro station, short-term prediction, wavelet transform, auto regressive moving average model
关键词
CICTP
报告人
Yan Li
Chang'an University

稿件作者
Yan Li Chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询