Bus Passenger Volume Forecasting Model Based on XGBoost Integrated Learning Algorithm
编号:605 访问权限:仅限参会人 更新:2021-12-03 10:25:10 浏览:180次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Bus passenger volume forecasting is the basis of traffic planning and dispatching, but weather and temperature often have a great impact on the short-term fluctuation of passenger volume, which bring great difficulty to bus planning. With the popularity of bus smart card, it is possible to use historical bus smart card data to forecast bus passenger volume. This paper presents a prediction model of integrated learning algorithm based on XGBoost, which uses the data combine the weather, temperature and other data affecting traffic trip with Shaoxing bus smart card data, and applied to forecast Shaoxing's total passenger volume and commuter line passenger volume. Next, seven hyperparameters of the model are adjusted by GridSearchCV module. In the end, the average absolute error obtained in the verification set is 11.1146 and the accuracy of passenger volume prediction every 3 minutes reaches 95.6%, which indicates the model can predict the passenger volume more accurately.
关键词
CICTP
报告人
Zhenyu Mei
Insititute of Transportation, Zhejiang univeristy

稿件作者
Zhenyu Mei Insititute of Transportation, Zhejiang univeristy
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询