A modified GAN model for traffic missing data imputation
编号:572 访问权限:仅限参会人 更新:2021-12-03 10:24:28 浏览:126次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Nowadays, more and more traffic research relies on plentiful intelligent transportation data. However, due to hardware, software or environmental reasons, traffic data may face various missing value problems. Previous studies have tried to tackle this problem using different models. However, as the missing rate increases, some models do not perform well. As we know, the GAN (generative adversarial network) model has achieved great success in the field of computer vision. This paper attempts to comprehensively impute the missing values at different missing rates by transforming the traffic data into image data. We use the modified GAN model to make the imputation. Studies have shown that the modified GAN model performs well compared with other models at different missing rates.
关键词
CICTP
报告人
Huiping Li
Tsinghua University

稿件作者
Huiping Li Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询