Determinants of Crash Fatalities in Urban Area: A Bayesian Ordered Probit with Sample Selection Model
编号:552 访问权限:仅限参会人 更新:2021-12-03 10:24:01 浏览:114次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Crash fatalities in urban area are a major public concern, and determinants continue to be of major interest to the officials of traffic department, policy makers, and researchers, among others. In this study the Bayesian ordered probit with sample selection model is presented as a methodological alternative in analyzing crash fatalities so as to determine the influencing factors in urban area. The crash dataset from 2014 to 2017 maintained by Nevada Department of Transportation is employed to illustrate the performance of proposed model. A two-step estimation procedure is conducted, in which the Heckman sample selection model determines the sample selection process, while the Bayesian ordered probit model accounts for the probability of crash fatalities. By comparing with the Bayesian ordered probit model, the proposed model outperforms in terms of goodness-of-fit, and the determinants of crash fatalities are identified. The findings provide potential insights for the officials, planners and policy makers.
关键词
CICTP
报告人
Xuecai Xu
Huazhong University of Science and Technology

稿件作者
Xuecai Xu Huazhong University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询