Machine learning-based surrogate model for link-level emission estimation
编号:495 访问权限:仅限参会人 更新:2021-12-03 10:22:45 浏览:139次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
In all researchers’ effort to quantify the portion of emission from the transportation sector, models of three resolution levels have been established: macroscopic, mesoscopic and microscopic. The finer the resolution of a model is, the higher accuracy the prediction is. While mesoscopic models have less demanding requirements on data input and can guarantee an acceptable accuracy, there are few studies focused on mesoscopic models and the few existing ones have poor model formulations. In this study, we utilized micro traffic simulation software and MOVES to create data basis. With the data, regression models and neural network models are established for the estimation of traffic emission. In particular, neural network models with long short-term memory architecture were employed to capture the information in data sequence.
关键词
CICTP
报告人
YUCHE CHEN
University of South Carolina

稿件作者
YUCHE CHEN University of South Carolina
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询