Identification of traffic bottlenecks on freeways using spatiotemporal diagrams: A comparative case study
编号:49 访问权限:仅限参会人 更新:2021-12-15 13:01:43 浏览:131次 张贴报告

报告开始:2021年12月17日 08:13(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
How to effectively identify traffic bottlenecks on freeway and accordingly implement targeted countermeasures remains a critical issue for traffic management and control. With the increasing development of GPS-embedded smartphone navigation, vehicle trajectory data collected in a crowdsourcing way provides a means of constructing spatiotemporal diagrams to support the decision-making process for traffic authorities. To this end, this study presents a comparative case study by comparing two technical methods, i.e., wavelet transform and image processing, which enable to facilitate the identification of recurrent traffic bottlenecks on freeways using vehicle trajectory data. The data utilized were 45-day probe vehicle data collected on urban expressways of Beijing during January and February, 2015. The validation results by referring to field bottlenecks show that image processing method outperforms wavelet transform in terms of estimation accuracy.
关键词
CICTP
报告人
Peng Chen
Beihang University

稿件作者
Peng Chen beihang university
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询