A passenger travel demand prediction model for extending metro networks with new lines successively come into use
编号:336 访问权限:仅限参会人 更新:2021-12-03 10:19:06 浏览:137次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Developing efficient and reliable urban metro systems is regarded as an important and effective approach for mitigating traffic congestion. For many urban metros under development, new lines have been successively built, put into use, and reshaping the travel demands of passengers. In the present study, we employed the online available socioeconomic data, transit infrastructure data and transit service data to develop a machine-learning passenger travel demand prediction model. The model is used to predict passenger travel demand for extending metro networks with new lines successively come into use. The model has also been used to uncover the correlation between each socioeconomic or transportation factor and passenger travel demand, which can provide useful insights for the planning and operation of new metro lines. Keywords: urban metro, new metro lines, OD prediction, travel demand
关键词
CICTP
报告人
Zhiren Huang
Central South University

稿件作者
Zhiren Huang Central South University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询