Understanding Scenarios for Cooperative V2V Active Safety Applications Using Connected Vehicle Datasets
编号:233 访问权限:仅限参会人 更新:2021-12-03 10:16:50 浏览:178次 张贴报告

报告开始:2021年12月17日 09:56(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the increasing experimental deployment of cooperative vehicular communication systems in the real world, large amounts of naturalistic driving data of connected vehicles are collected. These data can provide us with potential insights into more realistic scenarios for cooperative active safety V2V applications than the conceptual scenarios before the deployment. In this paper, a data analytic methodology is proposed to extract critical information related to scenarios for cooperative V2V active safety applications from data available of the Safety Pilot Model Deployment (SPMD). Lateral accelerations is investigated and extreme events are identified by driving volatility metrics. Then, the context of those extreme events, such as on-board radar readings, are extracted and analyzed by K-means algorithm. The clustered results and corresponding scenarios for cooperative V2V active safety applications are further discussed. These results could benefit design and testing for cooperative V2V active safety applications.
关键词
CICTP
报告人
Junyan Ma
Chang'an University

稿件作者
Junyan Ma Chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询