Driving intention recognition based on Transformer
编号:230 访问权限:仅限参会人 更新:2021-12-03 10:16:46 浏览:132次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Driving intention recognition, as a prerequisite in the driving decision process, plays an important role to the vehicle. Aiming at the inadequacy of feature extraction using LSTM structure, a driving intent recognition model with Transformer structure is proposed. First, based on the driving simulator and eye tracker, the driver's vehicle and scan path of eye movement in the highway condition are collected. Second, Transformer is introduced to recognize the driving intention. Finally, the test set is used to verify the proposed model, compared with the LSTM network and the standard recurrent neural network. Accuracy rate is 93.78%.Precision is 93.83%, Recall rate is 92.72%.F1 score is 92.73%. The results show that the feature extraction ability of Transformer structure is better than LSTM, and it has certain applicability to identify the process of lane-change intent recognition in long sequence background. Keywords: intelligent transportation; Transformer; lane-change intent recognition;
关键词
CICTP
报告人
Zhenlong Li
beijing university of technology

稿件作者
Zhenlong Li beijing university of technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询