Multiple Attacks Intrusion Detection Framework for In-vehicle Networks Based on Abnormal Data Features
编号:2054 访问权限:仅限参会人 更新:2021-12-13 16:36:16 浏览:147次 张贴报告

报告开始:2021年12月17日 09:29(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T4] Track 4 Transportation Behavior, Safety and Security

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
More and more security vulnerabilities are found in smart cars for an increasing electronic control units (ECUs) and external communication interfaces. Intrusion detection system (IDS) has become the focus research as an initiative protection measure, yet the key issues are not well resolved, such as detection accuracy and computation overhead. According to the vulnerability analysis and the difference features of abnormal data under different attacks, the in-vehicle network attack experimental platform and the abnormal behavior characteristic library are built. Then, the low complexity learning algorithm is used to detect the simple abnormal features. Meanwhile, the further complexity detection method are proved to achieve accurate detection of abnormal data for the abnormal behavior of false data injecting and semantic tampering. Our research work makes it easy to understand intrusion detection system for in-vehicle networks and benefits the implementation of security protection in automotive industry.
关键词
In-vehicle networks;abnormal data;intrusion detection;attack scenarios
报告人
Biao Chen
Beihang University

Haojie Ji
Beihang University

稿件作者
Biao Chen Beihang University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询