Decision-oriented Driving Scenario Recognition based on Unsupervised Learning
编号:2046 访问权限:仅限参会人 更新:2021-12-14 17:10:17 浏览:217次 张贴报告

报告开始:2021年12月17日 09:03(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The local driving behaviors varies between regions. Moreover, the statistical characteristics of surrounding vehicles' motions may significantly affect the performance of the policies of autonomous vehicles. It means autonomous vehicles (AV) driving policy may not work in a new area, which further limits the driving of AVs across regions. How to distinguish different scenarios from the perspective of affecting decision performance? This paper proposes the traffic scenario characteristics extractor and detector, using variational autoencoder (VAE). VAE is an unsupervised learning method, which can reconstruct the traffic data by the neural networks. This method uses vehicles state transition date as input and extract latent variables in two dimensions. In this way, the extracted hidden variables can represent the driving characteristics of the environment. Furthermore, the scenario characteristics detector relies on the similarity of the hidden variables, using KL-divergence. A policy can be used in the places has the similar characteristics. The method is tested by the NGSIM (Next Generation Simulation) and highD dataset. The VAE are trained One hundred thousand sets of data in ten minutes. The results indicate that this method can accurately distinguish between regions, and detect the similar traffic scenarios.
关键词
CICTP
报告人
Nanshan Deng
tsinghua

稿件作者
diange yang Tsinghua
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询