Train Arrival Delay Prediction Based on a CNN-LSTM Approach
编号:2045 访问权限:仅限参会人 更新:2021-12-11 10:58:52 浏览:124次 张贴报告

报告开始:2021年12月17日 09:02(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Train delay prediction is helpful to the reasonable formulation of train diagram, and can provide the basis for the decision-making of train dispatchers. In this paper, a hybrid method combining convolution neural network (CNN) and long short-term memory network (LSTM) is proposed to predict train arrival delays. First, eight characteristics (e.g., train departure delay, train actual running time) affecting train arrival delay are selected as the initial input variables of the prediction model. Next, CNN extracts feature again based on eight features, and outputs 32 new features. Further, combined with the newly extracted features, the proposed prediction model is trained using LSTM. Finally, the prediction performance of the proposed CNN-LSTM prediction model is evaluated based on the real-world operation records of Wuhan-Guangzhou high-speed railway. The case study results show that the proposed prediction model has a higher prediction accuracy and is better than deep neural networks and LSTM.
关键词
CICTP
报告人
Jianmin Li
Beijing Jiaotong University

稿件作者
Jianmin Li Beijing Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询