ERI Data based Metastable Critical Point Estimation Considering the Catastrophe Characteristic of Traffic Flow
编号:2044 访问权限:仅限参会人 更新:2021-12-13 11:13:29 浏览:136次 张贴报告

报告开始:2021年12月17日 09:01(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Metastable critical point estimation is enjoying much attention with increasingly serious traffic problems in cities. However, related research on metastable critical point estimation seldom employs travel data due to the lack of data acquisition and the neglect of catastrophe characteristic of traffic flow. This problem can be solved with the massive application of Electronic Registration Identification of the motor vehicle (ERI), which is an emerging technology to identify a unique vehicle based on Radio Frequency Identification (RFID). This paper presented an ERI data based framework for identification of critical phase transition interval of traffic state and estimation of metastable critical point considering the catastrophe characteristics of traffic flow. We utilized real data into the presented algorithms. Finally, the metastable critical traffic flow characteristic parameter with the various observation period was also analyzed quantitatively based on LSTM model, which can provide an important basis for traffic congestion early warning and control.
关键词
CICTP;Metastable critical point;ERI data;Catastrophe characteristic of traffic flow;Data gap;GMM;LSTM
报告人
Dihua Sun
Chongqing University

稿件作者
Dihua Sun Chongqing University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询