Flow estimation of freeway section based on multi-source data
编号:2042 访问权限:仅限参会人 更新:2021-12-03 15:36:51 浏览:130次 张贴报告

报告开始:2021年12月17日 09:00(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Expressway section flow estimation is great significance for specifying traffic management measures and guiding public travel. In view of the sparse distribution of highway traffic detection equipment, it is difficult to collect traffic parameters. Therefore, in the paper, the flow transfer coefficient between toll stations is used to reflect the spatio-temporal variation in the flow of the expressway network. Second. the average travel time of the road section is estimated to restore the vehicle's operating state. Thirdly, an estimation method of cross-sectional flow is proposed based on data fusion. Finally, in order to further reduce the estimation error, the RBF neural network model is used to modify the estimated value of the cross-sectional flow and obtain the final flow estimation result. The experimental results show that the method proposed in the paper can effectively estimate the traffic flow of the main line section of the expressway, which has certain reliability and practicability.
关键词
CICTP
报告人
Dihua Sun
Chongqing University

稿件作者
Dihua Sun Chongqing University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询