Crash Prediction Model for Freeway Segment Considering Time Correlation
编号:2017 访问权限:仅限参会人 更新:2021-12-10 09:33:34 浏览:124次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Freeways play an important role in transportation system. But crashes occur frequently on freeways. Crash prediction models for freeway can evaluate road safety status and analyze safety influencing factors. Based on 9987 crashes occurred on Ningbo-Taizhou-Wenzhou Freeway from 2016 to 2019, this paper develops a Random Effect Negative Binomial (RENB) model, which introduces a random effect term into a Negative Binomial (NB) model to explain time correlation of the crash data among different years. In this paper, the NB model and the RENB model are compared in terms of goodness of fit and prediction accuracy. Results show that factors influencing crashes are annual average daily traffic volume, length of research unit, number of lanes and road alignment; the goodness of fit of the NB model and the RENB model is consistent, while the NB model has better prediction accuracy.
关键词
Crash prediction model; time correlation; NB model; RENB model;
报告人
Xinyu Zhang
student Beijing University of Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询