Analysis on Features of Road Transportation Accidents of Hazardous materials Based on Data Imputation
编号:1991 访问权限:仅限参会人 更新:2021-12-16 17:44:57 浏览:108次 张贴报告

报告开始:2021年12月17日 09:08(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T4] Track 4 Transportation Behavior, Safety and Security

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Due to the severe shortage of data in the case records of hazardous materials road transport accidents, a de-completion model with missing data based on attribute distribution probability was developed to complete the missing data. Adopting Gradient Boosting Decision Tree (GBDT) as the base learner, the Bagging algorithm constructs an integrated GBDT prediction model. Besides, the completed data is used to the accident type prediction, and the analysis of factors influencing the accuracy is based on the predicted outcomes. Compared with other completion methods, the results reveal that the mean square error (MSE) value of the data after the completion of the attribute distribution probabilistic completeness model is the smallest. Applying the integrated GBDT prediction model, the accident type prediction of accuracy rate can reach 87.3%. Seven accident characteristic values have a notable influence on the accuracy of accident type prediction. According to various accident types, the values of the incident eigenvalues that determine the prediction accuracy are distinctive. By contrast, the characteristic value of "the number of vehicles involved" has a notable influence on the accuracy of most accident type predictions.
关键词
CICTP
报告人
Panyi Wei
RESEARCH INSTITUTE OF HIGHWAY MINISTRY OF TRANSPORT

稿件作者
WEI Panyi RESEARCH INSTITUTE OF HIGHWAY MINISTRY OF TRANSPORT
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询