An Improved Cross-camera Vehicle Tracking Method: Re-identification Feature Matching of Confidence Based on Spatio-temporal Information
编号:1984 访问权限:仅限参会人 更新:2021-12-15 14:20:53 浏览:108次 张贴报告

报告开始:2021年12月17日 08:47(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Intelligent Vehicle Infrastructure Cooperative Systems is a key research topic in the field of Intelligent Transportation Systems , and traffic object perception based on cameras is one of the foundations. Due to the development of computer vision, single-camera traffic object tracking has implemented some advanced methods, but cross-camera traffic object tracking is still inadequate in identity matching, especially cross-camera vehicle tracking, because of more similar appearance. With the background of multi-cameras, we take DeepSORT algorithm as the basic framework and propose a vehicle identity matching algorithm based on the re-identification features with confidence determined by spatio-temporal information. The proposed method has been testified on benchmark dataset of traffic video, achieving great performance and verifying its validity. Finally, our work further discusses the advantage and disadvantage of our cross-camera vehicle tracking algorithm based on joint target matching of vehicle features and spatio-temporal information, putting forward the future improvement direction of the algorithm.
关键词
CICTP
报告人
Jianming Hu
Tsinghua University

稿件作者
Jianming Hu Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询