Passenger Flow State Prediction Based on Full Load Rate under Congestion
编号:1946 访问权限:仅限参会人 更新:2021-12-14 17:18:14 浏览:105次 张贴报告

报告开始:2021年12月17日 08:35(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Nowadays, the phenomenon of congestion in rail transit is becoming more and more severe which need effective passenger inducement measures to alleviate this phenomenon. For solving the problem of precise estimation of passengers in crowded conditions, this article studies from the basis of theories and focuses on interval full load rate. First, a model was designed according to interval full load rate and the number of passenger-controlled stations to calculate the rail traffic congestion degree. For getting the most accurate prediction results of the congestion degree, Autoregressive Integrated Moving Average model (ARIMA) and Prophet are compared to predict the interval full load rate. Then a simple model was designed to identify the Space-Time range of congestion based on full load rate. On the basis of the above theories, the Guangzhou Metro APP was taken as an example to realize precise induction functions.
关键词
CICTP
报告人
Zeyu Zhao
Beijing JiaoTong University

稿件作者
Zeyu ZHAO Beijing JiaoTong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询