Predicting Mode Choice on Urban Work Trips by Non-private Vehicles
编号:1928 访问权限:仅限参会人 更新:2021-12-16 17:40:02 浏览:103次 张贴报告

报告开始:2021年12月17日 08:44(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T3] Track 3 Transportation Planning and Policy

暂无文件

摘要
In the great metropolitan area, under the low carbon transportation framework and imbalanced job-housing situation, some people choose to travel through non-private vehicles. Some governments would endorse such behavior by all means as congestion deteriorates. For this study, the 2017 National Household Travel Survey is being selected, targeting the individuals in urban areas who travel through walking, bicycling, public transit, and taxi for their work trips. A discrete choice (multinomial logit), unsupervised (k-means clustering and principal component analysis), and supervised (naïve Bayes classifier and random forest) models are fitted to test the predictive performance, with the vision to deeply master the system partial demand and design a better traveling system for citizens indirectly. The results show that unsupervised methods for predicting work trip mode choices needs to be further discussed while some supervised learning methods could be considered as a promising reference for predicting travel mode.
关键词
CICTP
报告人
Ye Chao
Thupdi

稿件作者
Ye Chao Thupdi
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询